>
;/x AD=A058 140

UNCLASSIFIED

DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/6 20/4
GOVERNING EQUATIONS FOR VISCOUS COMPRESSIBLE FLOW.(U)

AUG 78 W J SMITHEY
AERO=-1249

DTNSRDC=78/061




4300

O I8SOVaY







UNCLASSIFIED
SECURITY CLARSIFICATION OF THIS PAGE (When Data Entered)

EPORT DOCUMENTATION PAGE aEr e

2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

— P N

. T and Subtitle) @ TYPE OF REPORT & PERIOD COVERED 1 .

GOVERNING EQUATIONS FOR_VISCOUS / Final newt: Ogr- Gur /,5
_COMPRESSIBLE FLOW 2 A= i Sl

e e —————————— ﬂﬁmmwua

7. AuTHon(o) 7 S— —18- ER(as)

"

William J.H /Smithey

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::g2R.AgOE.LKE'JE‘NTT."PUﬁ“OBJEEg;, TASK
David W. Taylor Naval Ship R&D Center
Bethesda, Maryland 20084 oy Program Element 62241N

¢ Work Unit 1-1600-078

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE——
Naval Air Systems Command @ Augu.t 1978 /| -~
AIR-320D ~ 1 NUWEEROF PRGES
Washington, D.C. 20361 25

. MONITORING AGENCY E & ADDRESS(If ditf; ?_ Cm‘ﬂﬂ/’m Office) 1S. SECURITY CLASS. (of this report)
o = mﬂ /—\ UNCLASSIFIED

('fl ’WF/'/*I L/ d"jd) 7L r‘ g 15, ggf&a&tn{ncﬁho» DOWNGRADING

. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

» D D ( \
S > 1
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report) o

AUG 30 1978

18. SUPPLEMENTARY NOTES UUE[E)[_BBU U U

19. KEY WORDS (Continue on reverse aide if necessary and identity by block number)
Viscous Flow Equations Thermal Conductivity
Continuity Equation
Momentum Equation
Energy Equation

20. lsﬂlACT (Continue on reverse eide If y and identify by block ber)
~ Starting with the frictionless flow equations, governing equaticns for
viscous compressible flow are developed from a physical molecular transport
model by forming a first perturbation of the average flow property value
transported across a surface element by two distinct groups of molecules.
This results in a continuity equation with viscous correction terms.

DD , 5n"; 1473  eoimion oF 1 NoOV 68 is oBsOLETE UNCLASSIFIED B LB
S/N 0102-LF-014-6601 kit S '
SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntered)

387675 42




TABLE OF CONTENTS
i Page

NOTAT I ON . . . . . . . . - . . . . . . . . . . . . . . i v

BRGTRAET 5 23 gy e e R T M e R e ST g . 1
ADMINISTRATIVE INPORMATION . & & « = & o o o o o w0 i 1
SRERGBIHCERON . - i St e e h fa W = SR 1
BEVEBHOBIRENIE: "¢ o 0 S e i o e et BN (L 2
BRGEUSEEON: o v @ o it s R e B R o A 11
COMCEIIETOMD . & 0" 5 s e i e ont el s e i o e P A, e 5 15

REPENERGRE 5 850 100 e i e o 0B o e et b i e et . 17

BY N o ¢ puelS i ..casigy

Dist.  AVAIL. and /or_GPECRA

iii




al

-l ™ (1)

©nm Qa ol 'u =]

n

SQR( )

erl

cl

NOTATION
One half the average molecular speed
Velocity vector of molecules relative to U
-Specific heat at constant pressure
Specific heat at constant volume
Internal energy per unit mass
Body force per unit mass potential
Idem factor, I = ii + jj + kk

Outward drawn unit vector normal to the surface
element dS

Static pressure

Energy flux vector

Heat addition rate per unit mass

Universal gas constant divided by molecular weight
Closed surface bounding V

Square root of the guantity in parenthesis

Vector tangent to the surface element dS

Absolute static temperature

Flow velocity vector

Arbitrary volume

Flow property value at the surface element asso-
ciated with those molecules going out of V

Flow property value at the surface element
associated with those molecules going into V

Average distance of molecular collisions from the
surface element, two-thirds of the mean free path

Viscosity

3.14159
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p Density, mass per unit volume

T Average transit time of molecules from collision
point to the surface element, T = )\/a

Special Symbols

a( ) Partial time derivative of quantity in parenthesis
L Property of molecules moving out of V through
the surface element
() Property of molecules moving into V through 1
the surface element e 3
{ ¥ Conjugate of ( )
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ABSTRACT

Starting with the frictionless flow
equations, governing equations for viscous
compressible flow are developed from a phys-
ical molecular transport model by forming a
first perturbation of the average flow prop-
erty value transported across a surface ele-
ment by two distinct groups of molecules.
This results in a continuity equation with
viscous correction terms.

ADMINISTRATIVE INFORMATION
This investigation was authorized and funded by the
Naval Air Systems Command (AIR-320D) under Project Element
62241N, WF 41.421.091, Work Unit 1-1600-078, and was accom-

plished during the months of April, May, and June 1978.

INTRODUCTION

The frictionless flow equations may be written in terms
of a volume integral equal to a surface integral, where the
surface integral integrand accounts for flow of some physical
property across a surface element. The molecules crossing the
surface element fall into two groups, those with a component
of relative velocity in the same direction as the surface
element unit vector n and those with a component opposite to
n. By applying the simple physical molecular model in which
some average flow property is transported from the last aver-
age collision point across the surface element to these two
distinct groups of molecules, correction terms are obtained

for the frictionless flow continuity equation as well as




correction terms for the momentum and energy egquations.
The correction terms for the continuity equation are found
to be essential for the solution of certain physical

problems.

DEVELOPMENT
The frictionless flow equations may be written using
dyadic and vector notation in terms of volume and surface

integralsl*

s 3(p)@V = - [ ne(pl)ds (1)

; [3(p0)=pVFIdV = - [ ne(pU0+pnn)ds (2)
s [3(pe+pU+T/2-pF)=-pqldV

= = [ ne(pe+pU+U/2-pF+p)TdS (3)

where 3() denotes the partial derivative with respect to
time, VF is the body force per unit mass due to the potential
F, and -F is the potential energy per unit mass. These equa-
tions neglect molecular transport effects so there is no
viscosity or thermal conductivity. Thus, in a volume element
containing the surface element ndS, the molecular velocity

distribution is locally Maxwellian. Then, half of the

*A complete listing of references is given on page 17.
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molecules with density p' will have velocity c' relative

to U so that

nsc' 3 0 (4)
and the remaining molecules with density p" will have
nec" < 0 (5)
Then for Equation (1)
pU = p'(U+an) + p"(U-an) (6)

identifies the two groups of molecules crossing nds, f' from

inside V going out and p" from outside V going in, where

p' = p" = p/2 (7)
and

a = SQR(2RT/m) (8)

In Equation (8), a is found to be one-half the average
molecular speed from kinetic gas theory,2 R is the universal
gas constant divided by the molecular weight, and T is the

absolute static temperature.

Using p = pRT in Egquation (2)

( pUU+pnn) ( oUT+ oRTNN)

[p'(U+an) (U+an)+p" (U-an)(U-an)] (9a)

identifies the two groups of molecules crossing ndS and the

velocity associated with each group, where it is understood




that paa must be multiplied by m/2 when it occurs to
account for root mean square averaging and obtain the pRT
term. Expanding Equation (9a) and using the idem factor3 T

to replace nn, because nenn = n¢I = n, one finds
(pUU+pnn) = p'(U0+anU+aUn+RTI)
+ p"(UU-anU-aUn+RTI) (9b)

Using p = pRT, e = (=5 and c, = R + ¢c

p in Equation (3)

v
p(cpr+6-672-p)ﬁ = p'(cpT+ﬁ-B/2-F)(ﬁ+aE)
+ p"(cpT+ﬁ-ﬁ/2—F)(ﬁ-aE) (10)

identifies the two groups of molecules crossing ndS and the
energy associated with each group.

To form the perturbation, assume some average flow prop-
erty value, e.g., X', is acquired by the p' molecules at their
last average collision point before crossing nds.

Then, if X is the average flow property at the surface element
X' = X - ()/a)(U+an)+V(X) (1l1a)

is the average flow property value acquired by the p' mole-
cules and transported across the surface element, where A

is the average distance of the collision point from dS when
neU = 0. Also, ) is two-thirds of the mean free path. The

ratio (A/a) is an average characteristic time, e.g., T,
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between molecular collisions and passage of the molecules

through dS. Thus, Equation (lla) may also be written
X' = X - t1(U+an)e.VX (11b)

Similarly, if Y" is an average flow property value of the p"

molecules
Y" = Y + t(an-U).VY (12)

The time averaging of molecular motion in a volume ele-
ment provides the basis for the perturbation model and this
process should be examined briefly. At standard conditions
there are approximately 2.7 x 1012 molecules in a cubic centi-
meter of gas. The dimension of A is approximately 4.3 x 1076
cm and a is approximately 2.2 x 104 cm/s, hence, T = 2 x 10”10
seconds. Then, as the molecules enter and leave a cubic vol-
ume element of dimension 2\, there will be approximately
6 x 8.6 x 8.6 x 2.2 x 2.7 x 1011 = 2.6 x 1014 discrete values
of a particular frictionless flow property (po,U,p,etc.) per
second. If the macroscopic time element associated with the
flow properties in the frictionless flow equations is taken
as one microsecond, then during that time element there will
be approximately 2.6 x 108 discrete values of the frictionless
flow property that form the average value associated with
the location of the cubic volume element at that particular
time. During this microsecond, approximately 2.2 x 107 mole-

cules will enter a side of the cubic volume element and
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penetrate to its center; thus transporting their flow property

value across a surface element at the center of the volume
| element. The flow property value transported across the sur-
face element by these penetrating molecules may be different
from the average frictionless flow property value of the volume
element, which is macroscopically flowing through the surface
element. The perturbation model attempts to account for this
difference. To be consistent, the perturbation model will

be applied to the surface element flux of all three friction-

less flow equations.
Substituting Equations (6), (1lb), and (12) in Equation

(1) forms the continuity perturbation,

/ 3(p)dv

- /[ ne[p'(U+an)+p" (U-an) s

T(U+an)«V(p'U+p'an)+t(an-0)e«V(p"U-p"an)]ds v ;

= - [ ne[pU-1tU0+V(pU)-tanev(pan)]ds (13a)

where X = p'(U+an) and Y = p"(U-an) has been used.

Expanding the last term of Equation (13a) one obtains a com-
ponent ne(n.vn). The derivative n.vn will be a vector t
which is tangent to dS. Thus, Ne(neVn) = net = 0. With this

and nen = 1, Equation (13a) may be rewritten

J 3(p)dV = = [ ne[pU=-TU«V(pU)=-AV(pa)]ds (13b)

ﬂ
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The last two terms of Equation (13b), dotted by n, represent

a decrease of the frictionless flow mass flux ne(pU) crossing
dS due both to a shift of the last two average collision points
by the frictionless flow velocity and to a molecular mass

flux gradient. In the last term of Equation (13b), the X may

be replaced by viscosity, u = pal. With this and the diver-

gence theorem, Equation (13b) becomes :
S {3(p)+Ve(pU)-Ve[TUV(pU)+uvin(pa)]}dv = 0 (14)

Because the volume is arbitrary, the integrand of Equation

(14) must be zero. Thus, the continuity equation becomes
3(p) + Ve(pU) = Ve[tUV(pU)+uv1in(pa)] (15)

' where the terms on the right provide corrections to the

macroscopic frictionless flow continuity equation due both to
a shift of the last two average collision surfaces, caused by
the flow velocity, and to the molecular mass transport
gradient.

Substitute Equations (9a), (9b), (llb) and (12) in Equa-

tion (2) to form the momentum perturbation
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J [93(0U0)=-pVF)aV
= - [/ ne{p'(U+an)(U+an)+o"(U-an)(U-an)
-T(U+an)« V[ o' (U+an) (T+an)]
+T1(an-0)« V[ p" (U-an)(U-an))}ds
= - [ Ne[pUU+pI-1U+V(pUU+pI)

-\n+Y(panU+paln)]ds (16)

Using the divergence theorem
f [3(pU)+Ve(pU0)+Vp=-pVF=Ve[1UV(pTD)]
-V(tUe¥p)]dV = [ ne[ANeV(panU+paln)]ds (17) #

The surface integral in Equation (17) contains the symmetric
dyadic (panU+paln) whose value depends on the orientation of S
n. Carrying out the differentiation for n.v, the surface

integral integrand becomes

ns[An.V(panU+paln)]

neld{(n[neV(pal)]+t(pal) ]

+[nev(pal)]n+(pal)t)} (18)

N
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The dyadic on the right side of Equation (18) is also

symmetric. Using nen = 1 and net = 0, this may be rewritten
Ne[An«V(panU+paln)]
= neX[V(pal)+[n.V(pal)n+(pal)t] (19)

The dyadic on the right side of Equation (19) must be sym-
metric to preserve equilibrium of the volume element,? thus
the last terms must be replaced by [V(paU)]., which is the
conjugate of V(paU). The normal component ne[n.vV(paU)] is
found to be equal to the normal component ne(ne«[V(paU)]l.) by
merely expanding; thus it is the tangential component of
E-[V(paﬁ)]c which must be equal to ne(paU)t to preserve the
equilibrium of the volume element. Other authors® showed
the requirement for a symmetric dyadic using the principle
of angular momentum conservation, so that this view could

be used instead of preserving equilibrium of the volume
element. Perhaps the opposite point of view would be to
assume that a volume element is not in equilibrium and has
started to spin up. Then, in a microsecond, the molecules
within the volume element would flux back and forth about a
thousand times, transporting tangential momentum which opposes

the spin to reestablish the volume element's equilibrium.

e




In any case, the dyadic must be symmetric. With Equation (19)
and the divergence theorem, Equation (17) becomes
S {3(pU)+Ve (pUT)+Vp=-pVF-Ve[TUV(pUD)]

~V(10.9p) -V (AV(pal)+A[V(pal)].)}dv = 0 (20)
Because the volume is arbitrary, the integrand of Equation
(20) must pbe zero. Using u, the momentum equation becomes

3(pU) + Ve(pUU) + Vp = pVF = Ve[T1UeV(pUD)]
+ V(10.Vp) + v-[(u/pa){V(paﬁ)+[V(paﬁ)1c}] (21)

where the first two terms on the right, involving 1, provide
a correction due to a shift of the last average collision
surfaces by the flow velocity. The last terms provide a
correction due to the molecular momentum transport gradient.
The dyadic V(paU) and its conjugate may be expanded to show
the correction that is due strictly to viscosity and velocity

gradient
(u/pa) {V(pal)+[V(pal)]}

= u[V0+(V0).] + ul(Vinpa)TU+U(Vlnpa)] (22)

10
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Using Equations (10), (11b), and (12) in Equation (3)

to form the energy perturbation
/ {3(pe+pU+U/2-pF)+Ve[(pe+pU+U/2-pF + p)T]-pqg}dv
= f E-{r(ﬁ+ai)-V[p'(cpT+ﬁoﬁ/2-F)(ﬁ+aE)1
+r(ﬁ-aﬁ).vlp"(cpT+ﬁ-ﬁ/2-F)(ﬁ-aE)]}ds
w1 H-{rﬁ-vlp(cpr+6-ﬁ/2-F)61
+AV[pa(c,T+0.0/2-F)]}ds (23)
With the divergence theorem, Equation (23) may be written
as a volume integral equal to zero, and, since the volume is

arbitrary, the integrand is zero. Then, using A = pu/(pa),

the energy equation may be written

3(p [cyT+U+U/2-F]) + Ve[p(cpT+U0/2-F)T] - oq

= V'{Tﬁ-V[p(cpT+ﬁ-ﬁ/2—F)ﬁ]+uV(cpT+ﬁ-ﬁ/2 -F)
+u(cpT+ﬁ-ﬁ/2-F)v[1n(pa)]} (24)
DISCUSSION

The significant result obtained from this development
is the continuity equation with molecular transport correc-
tion terms, Equation (15). These terms correct the macro-

scopic frictionless flow continuity equation and are the same

order of magnitude as the correction terms for the momentum

11




and energy equations. It should also be noted that the
momentum and energy equations, given by Equations (21) and
1 (24), provide new correction terms due to a shift of the
molecular collision surfaces, on both sides of the surface
element d4S, by the flow velocity. When viewed in the surface
integrals, all of these correction terms may be physically
interpreted as perturbations to the locally Maxwellian mole-
cular velocity distribution function. The perturbations re-
sult from the collision surfaces being situated on both sides
of the surface element dS, rather than coincident with it.
Two simple examples will illustrate the nature of these
correction terms. First, consider a thermally insulated
container of gas at rest, with uniform pressure, without body

forces, and with a thermally insulated partition so that the -

two compartments of the container are at different tempera-
tures. Now, if the partition is removed, there will be un-
steady effects due to molecular motion which initially trans-
port mass and energy across the surface elements where the

partition was located. For the two compartments, let Ty < Ty,

and because the pressures are egual p1 < pp. The net mass

flux from 1 to 2 will be

(pyay-ppajz)/2

=[P/SQR(2Rm)] [1/SQR(T;)-1/SQR(T;)] (25)

12
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The net energy flux from 1 to 2 will be
( plalcpTl- DzachTz )/2
= [PCp/SQR(2R")l[SQR(Tl)-SQR(Tz)] (26)

Thus, near the surface element there will be a time rate of
change of density 9(p) even though the macroscopic flow
velocity is zero. This effect is included in Equation (15).
Since these two net effects occur at the molecular level
within a few mean free paths, a net pressure gradient will
be established across the surface element which starts to
drive the momentum equation. Of course the system without
the partition will eventually reach a new state of thermo-
dynamic equilibrium.

As a second example, consider the flow near the center
of a long thermally insulated pipe filled with gas, without
body forces, which is conducting heat in a steady state con-
dition. Taking Equation (15) back to a surface integral, the

macroscopic mass flux will be
pU = 10+V(pU) + uVlin(pa) (27)

which is exactly balanced by the small microscopic mass flux

in the -U direction.

13




Taking Equation (24) back to a surface integral, the energy

flux vector Q will be
Q= p(cpT+ﬁ-ﬁ/2)ﬁ - rE-V[p(cpT+Eoﬁ/2)61
- uV(cpT+ﬁ-6/2) - u(cpT+6-ﬁyz)v1n(pa) (28)

This equation shows that the energy is transported macro-
scopically by pU as well as microscopically by the molecular
activity. Using Egquation (27), the energy flux vector may

be written
Q= - [rﬁ-V(pG)+uv1n(pa)1(Tﬁ-V(cpT+E-E/2)1
- uV(cpT+ﬁ-G/2) (29)

The principal term contributing to the energy flux vector in
Equation (29) is —uV(cpT). If the body force potential F
were not zero, the energy flux vector Q would include this
effect from Equation (24). Thus, if a long pipe were used
to experimentally determine the coefficient of thermal con-
ductivity, the result would be affected slightly by the
orientation of the pipe to the potential gradient. 1In this

case, the approximate net energy flux would be
n.Q = -uﬁ.V(cpT-F) (30)

The correction terms involving tU in Equations (15),

(21), and (24) will become significant in high-speed flows,

14
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such as found in ballistic reentry and shock wave
calculations. This occurs when U approaches the same order

of magnitude or is greater than a, so that U is several or-

T

ders of magnitude larger than in the two examples given above.

CONCLUSIONS
The governing equations for viscous compressible flow
have been derived by using a simple molecular transport model

to form an approximate perturbation of the frictionless flow

equation. The molecular transport correction terms in the
continuity equation are of the same order of magnitude as the

correction terms in the momentum and energy equations. It

appears that all of these correction terms should be con-
sidered initially for the proper analysis of diverse flow

processes.
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